phmg.net
当前位置:首页 >> 当x趋向于0时,ln(1+x)~x等价无穷小的证明 >>

当x趋向于0时,ln(1+x)~x等价无穷小的证明

lim(x→0) ln(1+x)/x=lim(x→0) ln(1+x)^(1/x)=ln[lim(x→0) (1+x)^(1/x)] 由两个重要极限知:lim(x→0) (1+x)^(1/x)=e,所以原式=lne=1, 所以ln(1+x)和x是等价无穷小

lim(x→0) ln(1+x)/x =lim(x→0) ln(1+x)^(1/x) =ln[lim(x→0) (1+x)^(1/x)] 由两个重要极限知:lim(x→0) (1+x)^(1/x)=e; 所以原式=lne=1,所以ln(1+x)和x是等价无穷小 无穷小就是以数零为极限的变量。然而常量是变量的特殊一类,就像直线属于曲线的...

计算x趋于0时 lim1n(1+x) / x=ln(1+x)^1/x=1ne=1, 所以ln(1+x)是x的等价无穷小

1、做比值,是个0/0不定式,所以用罗比达法则上下求导是(1/1+x)/1,很明显,当x趋向0时,他们的比值等于1,是等价无穷小 2、将ln(1+x)用泰勒公式展开,因为当x趋向0时后面的项也趋向0,可略去只剩下1/1+x,同上也是1

ln(1-x)的等价无穷小是-x,当x→0时.

∵lim(x-->0)[ln(1+x)]/x =lim(x-->0)1/(1+x) 【罗比达法则】 =1 ∴x-->0时, ln(1+x)与为等价x无穷小量.

由洛必达法则 lim(ln(1+x)+x^2)/2 =lim(1/(1+x)+2x) 当x趋于0 第二个极限可以用x=0带入得1 根据等价无穷小的定义,相除极限为1,所以是等价无穷小

网站首页 | 网站地图
All rights reserved Powered by www.phmg.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com